Articles

  1. Bernardo, P.; Scorzafave, V.; Clarizia, G.; Tocci, E.; Jansen, J. C.; Borgogno, A.; Malpass-Evans, R.; McKeown, N. B.; Carta, M.; Tasselli, F. Thin film composite membranes based on a polymer of intrinsic microporosity derived from Tröger’s base: A combined experimental and computational investigation of the role of residual casting solvent. Journal of Membrane Science 2019, 569, 17. doi.org/10.1016/j.memsci.2018.10.001
  2. Monteleone, M.; Esposito, E.; Fuoco, A.; Lanč, M.; Pilnáček, K.; Friess, K.; Bezzu, C.; Carta, M.; McKeown, N.; Jansen, J., A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Pressure Dependence of Transport Parameters. Membranes 2018, 8 (3), 73. doi:10.3390/membranes8030073
  3. Sabetghadam, A.; Liu, X.; Orsi, A.; Lozinska, M.; Johnson, T.; Jansen, K.; Wright, P.; Carta, M.; McKeown, N.; Kapteijn, F.; Gascon, J., Towards High Performance MOF – Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging via Polymer Doping. Chemistry – A European Journal 2018,  24 (49), 12796 doi.org/10.1002/chem.201803006
  4. Adamik, R. K.; Hernández-Ibáñez, N.; Iniesta, J.; Edwards, J. K.; Howe, A. G. R.; Armstrong, R. D.; Taylor, S. H.; Roldan, A.; Rong, Y.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; He, D.; Marken, F. Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. Nanomaterials 20188(7), 542; doi.org/10.3390/nano8070542
  5. Bezzu, C. G.; Carta, M.; Ferrari, M.-C.; Jansen, J. C.; Monteleone, M.; Esposito, E.; Fuoco, A.; Hart, K.; Liyana-Arachchi, T. P.; Colina, C. M.; McKeown, N. B., The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. Journal of Materials Chemistry A 2018, 6 (22), 10507  doi:10.1039/C8TA02601G
  6. Fraga, S. C.; Monteleone, M.; Lanč, M.; Esposito, E.; Fuoco, A.; Giorno, L.; Pilnáček, K.; Friess, K.; Carta, M.; McKeown, N. B.; Izák, P.; Petrusová, Z.; Crespo, J. G.; Brazinha, C.; Jansen, J. C., A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. Journal of Membrane Science 2018, 561, 39-58. doi: 10.1016/j.memsci.2018.04.029
  7. Williams, R.; Burt, L. A.; Esposito, E.; Jansen, J. C.; Tocci, E.; Rizzuto, C.; Lanc, M.; Carta, M.; McKeown, N. B. A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Troger’s base polymerization. Journal of Materials Chemistry A 2018, 6 (14), 5661. doi: 10.1039/C8TA00509E
  8. Leong, S. X.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Madrid, E.; Marken, F. One-step preparation of microporous Pd@cPIM composite catalyst film for triphasic electrocatalysis. Electrochemistry Communications 2018, 86 (Supplement C), 17. doi.org/10.1016/j.elecom.2017.11.007 
  9. Langley, A. R.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Dawes, J. H. P.; Murphy, E.; Marken, F. Linking the Cu(II/I) potential to the onset of dynamic phenomena at corroding copper microelectrodes immersed in aqueous 0.5 M NaCl. Electrochimica Acta 2018, 260, 348. doi.org/10.1016/j.electacta.2017.12.083
  10. Rose, I.; Bezzu, C. G.; Carta, M.; Comesana-Gandara, B.; Lasseuguette, E.; Ferrari, M. C.; Bernardo, P.; Clarizia, G.; Fuoco, A.; Jansen, J. C.et al. Polymer ultrapermeability from the inefficient packing of 2D chains. Nature Materials 2017, 16 (9), 932. doi:10.1038/nmat4939
  11. Rong, Y.; He, D.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Gromboni, M. F.; Mascaro, L. H.; Nelson, G. W.; Foord, J. S.; Holdway, P.et al. High-Utilisation Nanoplatinum Catalyst (Pt@cPIM) Obtained via Vacuum Carbonisation in a Molecularly Rigid Polymer of Intrinsic Microporosity. Electrocatalysis 2017, 8 (2), 132. doi.org/10.1007/s12678-016-0347-5
  12. Riza Putra, B.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Marken, F. Potassium cation induced ionic diode blocking for a polymer of intrinsic microporosity | nafion “heterojunction” on a microhole substrate. Electrochimica Acta 2017, 258 (Supplement C), 807. doi.org/10.1016/j.electacta.2017.11.130
  13. Putra, B. R.; Aaronson, B. D. B.; Madrid, E.; Mathwig, K.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Marken, F. Ionic Diode Characteristics at a Polymer of Intrinsic Microporosity (PIM) Nafion “Heterojunction” Deposit on a Microhole Poly(ethylene-terephthalate) Substrate. Electroanalysis 2017, 29 (10), 2217. doi.org/10.1002/elan.201700247
  14. Hernandez, N.; Iniesta, J.; Leguey, V. M.; Armstrong, R.; Taylor, S. H.; Madrid, E.; Rong, Y.; Castaing, R.; Malpass-Evans, R.; Carta, M.et al. Carbonization of polymers of intrinsic microporosity to microporous heterocarbon: Capacitive pH measurements. Applied Materials Today 2017, 9, 136. doi.org/10.1016/j.apmt.2017.06.003
  15. He, D.; Rauwel, E.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Gorle, D. B.; Anbu Kulandainathan, M.; Marken, F. Redox reactivity at silver microparticle-glassy carbon contacts under a coating of polymer of intrinsic microporosity (PIM). J. Solid State Electrochem. 2017, 21 (7), 2141. doi.org/10.1007/s10008-017-3534-2
  16. Carta, M.; Bezzu, C. G.; Vile, J.; Kariuki, B. M.; McKeown, N. B. Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Troger’s base. Polymer 2017, 126, 324. doi.org/10.1016/j.polymer.2017.03.037
  17. Bryant, M. J.; Skelton, J. M.; Hatcher, L. E.; Stubbs, C.; Madrid, E.; Pallipurath, A. R.; Thomas, L. H.; Woodall, C. H.; Christensen, J.; Fuertes, S.et al. A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor. Nature Communications 2017, 8 (1), 1800.  doi:10.1038/s41467-017-01941-2
  18. Benito, J.; Sánchez-Laínez, J.; Zornoza, B.; Martín, S.; Carta, M.; Malpass-Evans, R.; Téllez, C.; McKeown, N. B.; Coronas, J.; Gascón, I. Ultrathin Composite Polymeric Membranes for CO2/N2 Separation with Minimum Thickness and High CO2 Permeance. ChemSusChem 2017, 10 (20), 4014. doi.org/10.1002/cssc.201701139
  19. Yang, Z.; Guo, R.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Guiver, M. D.; Wu, L.; Xu, T. Highly Conductive Anion-Exchange Membranes from Microporous Tröger’s Base Polymers. Angewandte Chemie International Edition 2016, 55 (38), 11499. doi.org/10.1002/ange.201605916
  20. Taylor, R. G. D.; Bezzu, C. G.; Carta, M.; Msayib, K. J.; Walker, J.; Short, R.; Kariuki, B. M.; McKeown, N. B. The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing. Chem. – Eur. J. 2016, 22 (7), 2466. doi.org/10.1002/chem.201504212
  21. Rong, Y.; Song, Q.; Mathwig, K.; Madrid, E.; He, D.; Niemann, R. G.; Cameron, P. J.; Dale, S. E. C.; Bending, S.; Carta, M.et al. pH-induced reversal of ionic diode polarity in 300 nm thin membranes based on a polymer of intrinsic microporosity. Electrochem. Commun. 2016, 69, 41. doi.org/10.1016/j.elecom.2016.05.019
  22. Rong, Y.; Kolodziej, A.; Madrid, E.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Marken, F. Polymers of intrinsic microporosity in electrochemistry: Anion uptake and transport effects in thin film electrodes and in free-standing ionic diode membranes. J. Electroanal. Chem. 2016, 779, 241. doi.org/10.1016/j.jelechem.2015.11.038
  23. Pilnáček, K.; Vopička, O.; Lanč, M.; Dendisová, M.; Zgažar, M.; Budd, P. M.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Friess, K. Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation. Journal of Membrane Science 2016, 520, 895. doi.org/10.1016/j.memsci.2016.08.054
  24. Lee, M.; Bezzu, C. G.; Carta, M.; Bernardo, P.; Clarizia, G.; Jansen, J. C.; McKeown, N. B. Enhancing the Gas Permeability of Troger’s Base Derived Polyimides of Intrinsic Microporosity. Macromolecules (Washington, DC, U. S.) 2016, 49 (11), 4147. doi10.1021/acs.macromol.6b00351
  25. Lasseuguette, E.; Carta, M.; Brandani, S.; Ferrari, M.-C. Effect of humidity and flue gas impurities on CO2 permeation of a polymer of intrinsic microporosity for post-combustion capture. Int. J. Greenhouse Gas Control 2016, 50, 93. doi.org/10.1016/j.ijggc.2016.04.023
  26. He, D.; Rong, Y.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Marken, F. Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM). RSC Adv. 2016, 6 (11), 9315. doi:10.1039/C5RA25320A
  27. He, D.; He, D. S.; Yang, J.; Low, Z.-X.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Marken, F. Molecularly Rigid Microporous Polyamine Captures and Stabilizes Conducting Platinum Nanoparticle Networks. ACS Applied Materials & Interfaces 2016, 8 (34), 22425. doi:10.1021/acsami.6b04144
  28. Benzaqui, M.; Semino, R.; Menguy, N.; Carn, F.; Kundu, T.; Guigner, J.-M.; McKeown, N. B.; Msayib, K. J.; Carta, M.; Malpass-Evans, R.et al. Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. ACS Appl. Mater. Interfaces 2016, 8 (40), 27311. doi: 10.1021/acsami.6b08954
  29. Ahn, S. D.; Kolodziej, A.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Bull, S. D.; Buchard, A.; Marken, F. Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations. Electrocatalysis 2016, 7 (1), 70. doi.org/10.1007/s12678-015-0284-8
  30. Rose, I.; Carta, M.; Malpass-Evans, R.; Ferrari, M.-C.; Bernardo, P.; Clarizia, G.; Jansen, J. C.; McKeown, N. B. Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. ACS Macro Lett. 2015, 4 (9), 912. doi10.1021/acsmacrolett.5b00439
  31. Rong, Y.; He, D.; Sanchez-Fernandez, A.; Evans, C.; Edler, K. J.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Clarke, T. J.; Taylor, S. H.et al. Intrinsically Microporous Polymer Retains Porosity in Vacuum Thermolysis to Electroactive Heterocarbon. Langmuir 2015, 31 (44), 12300. doi10.1021/acs.langmuir.5b02654
  32. Madrid, E.; Cottis, P.; Rong, Y.; Rogers, A. T.; Stone, J. M.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Marken, F. Water desalination concept using an ionic rectifier based on a polymer of intrinsic microporosity (PIM). J. Mater. Chem. A 2015, 3 (31), 15849. doi:10.1039/C5TA04092B
  33. Kolodziej, A.; Ahn, S. D.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Chapman, R. S. L.; Bull, S. D.; Marken, F. Electrocatalytic carbohydrate oxidation with 4-benzoyloxy-TEMPO heterogenized in polymer of intrinsic microporosity. Electrochim. Acta 2015, 160, 195. doi.org/10.1016/j.electacta.2015.01.106
  34. He, D.; Rong, Y.; Kou, Z.; Mu, S.; Peng, T.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Marken, F. Intrinsically microporous polymer slows down fuel cell catalyst corrosion. Electrochem. Commun. 2015, 59, 72. doi.org/10.1016/j.elecom.2015.07.008
  35. Al Kutubi, H.; Rassaei, L.; Olthuis, W.; Nelson, G. W.; Foord, J. S.; Holdway, P.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Tsang, S. C.et al. Polymers of intrinsic microporosity as high temperature templates for the formation of nanofibrous oxides. RSC Adv. 2015, 5 (89), 73323. doi:10.1039/C5RA15131G
  36. Xia, F.; Pan, M.; Mu, S.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Attard, G. A.; Brew, A.; Morgan, D. J.; Marken, F. Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth. Electrochim. Acta 2014, 128, 3. doi.org/10.1016/j.electacta.2013.08.169 
  37. Vile, J.; Carta, M.; Bezzu, C. G.; Kariuki, B. M.; McKeown, N. B. Centrotriindane- and triptindane-based polymers of intrinsic microporosity. Polymer 2014, 55 (1), 326. doi.org/10.1016/j.polymer.2013.07.035
  38. Tocci, E.; De Lorenzo, L.; Bernardo, P.; Clarizia, G.; Bazzarelli, F.; McKeown, N. B.; Carta, M.; Malpass-Evans, R.; Friess, K.; Pilnacek, K.et al. Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Troger’s Base Units. Macromolecules (Washington, DC, U. S.) 2014, 47 (22), 7900. doi: 10.1021/ma501469m
  39. Taylor, R. G. D.; Carta, M.; Bezzu, C. G.; Walker, J.; Msayib, K. J.; Kariuki, B. M.; McKeown, N. B. Triptycene-Based Organic Molecules of Intrinsic Microporosity. Org. Lett. 2014, 16 (7), 1848. doi: 10.1021/ol500591q
  40. Rong, Y.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Attard, G. A.; Marken, F. Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation. Electroanalysis 2014, 26 (5), 904. doi.org/10.1002/elan.201400085 
  41. Rong, Y.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Attard, G. A.; Marken, F. High density heterogenisation of molecular electrocatalysts in a rigid intrinsically microporous polymer host. Electrochem. Commun. 2014, 46, 26. doi.org/10.1016/j.elecom.2014.06.005
  42. Rogan, Y.; Malpass-Evans, R.; Carta, M.; Lee, M.; Jansen, J. C.; Bernardo, P.; Clarizia, G.; Tocci, E.; Friess, K.; Lanc, M.et al. A highly permeable polyimide with enhanced selectivity for membrane gas separations. J. Mater. Chem. A 2014, 2 (14), 4874. doi 10.1039/C4TA00564C
  43. Madrid, E.; Rong, Y.; Carta, M.; McKeown, N. B.; Malpass-Evans, R.; Attard, G. A.; Clarke, T. J.; Taylor, S. H.; Long, Y.-T.; Marken, F. Metastable Ionic Diodes Derived from an Amine-Based Polymer of Intrinsic Microporosity. Angew. Chem., Int. Ed. 2014, 53 (40), 10751. doi.org/10.1002/anie.201405755
  44. Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Lee, M.; Rose, I.; McKeown, N. B. The synthesis of microporous polymers using Troger’s base formation. Polym. Chem. 2014, 5 (18), 5267. doi: 10.1039/C4PY00609G 
  45. Carta, M.; Croad, M.; Malpass-Evans, R.; Jansen, J. C.; Bernardo, P.; Clarizia, G.; Friess, K.; Lanc, M.; McKeown, N. B. Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Troeger’s Base Polymers. Adv. Mater. (Weinheim, Ger.) 2014, 26 (21), 3526. doi.org/10.1002/adma.201305783
  46. Carta, M.; Croad, M.; Jansen, J. C.; Bernardo, P.; Clarizia, G.; McKeown, N. B. Synthesis of cardo-polymers using Troger’s base formation. Polym. Chem. 2014, 5 (18), 5255. doi:10.1039/C4PY00607K
  47. Carta, M.; Croad, M.; Bugler, K.; Msayib, K. J.; McKeown, N. B. Heterogeneous organocatalysts composed of microporous polymer networks assembled by Troger’s base formation. Polym. Chem. 2014, 5 (18), 5262. doi:10.1039/C4PY00608A
  48. Carta, M.; Bernardo, P.; Clarizia, G.; Jansen, J. C.; McKeown, N. B. Gas Permeability of Hexaphenylbenzene file Based Polymers of Intrinsic Microporosity. Macromolecules (Washington, DC, U. S.) 2014, 47 (23), 8320. doi: 10.1021/ma501925j 
  49. Del Regno, A.; Gonciaruk, A.; Leay, L.; Carta, M.; Croad, M.; Malpass-Evans, R.; McKeown, N. B.; Siperstein, F. R. Polymers of Intrinsic Microporosity Containing Troeger Base for CO2 Capture. Ind. Eng. Chem. Res. 2013, 52 (47), 16939. doi: 10.1021/ie402846a 
  50. Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science (Washington, DC, U. S.) 2013, 339 (6117), 303. doi: 10.1126/science.1228032
  51. Vile, J.; Carta, M.; Bezzu, C. G.; Dee, J.; McKeown, N. B. The unexpected formation of a dihydroisobenzofuran derivative from the addition of a Grignard reagent to a 1,3-indandione. ARKIVOC (Gainesville, FL, U. S.) 2012, DOI:10.3998/ark.5550190.0013.712 10.3998/ark.5550190.0013.712(7), 190. 10.3998/ark.5550190.0013.712
  52. Carta, M.; Helliwell, M.; McKeown, N. B. Crystal Structures of a Series of 1,1-Spiro-bis(1,2,3,4-tetrahydronaphthalene)-Based Derivatives. J. Chem. Crystallogr. 2012, 42 (2), 111. doi.org/10.1007/s10870-011-0211-7
  53. Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. A Spirobifluorene-Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation. Adv. Mater. (Weinheim, Ger.) 2012, 24 (44), 5930. doi.org/10.1002/adma.201202393
  54. Vile, J.; Carta, M.; Bezzu, C. G.; McKeown, N. B. Tribenzotriquinacene-based polymers of intrinsic microporosity. Polym. Chem. 2011, 2 (10), 2257. doi: 10.1039/C1PY00294E
  55. Short, R.; Carta, M.; Bezzu, C. G.; Fritsch, D.; Kariuki, B. M.; McKeown, N. B. Hexaphenylbenzene-based polymers of intrinsic microporosity. Chem. Commun. (Cambridge, U. K.) 2011, 47 (24), 6822. doi:10.1039/C1CC11717C
  56. Fritsch, D.; Bengtson, G.; Carta, M.; McKeown, N. B. Synthesis and Gas Permeation Properties of Spirobischromane-Based Polymers of Intrinsic Microporosity. Macromol. Chem. Phys. 2011, 212 (11), 1137. doi.org/10.1002/macp.201100089
  57. Carta, M.; Raftery, J.; McKeown, N. B. Crystal Structures of 5,6,5′,6′-Tetramethoxy-1,1′-spirobisindane-3,3′-dione and two of its Fluorene Adducts. J. Chem. Crystallogr. 2011, 41 (2), 98. doi.org/10.1007/s10870-010-9844-1
  58. Carta, M.; Msayib, K. J.; McKeown, N. B. Novel polymers of intrinsic microporosity (PIMs) derived from 1,1-spiro-bis(1,2,3,4-tetrahydronaphthalene)-based monomers. Tetrahedron Lett. 2009, 50 (43), 5954. doi.org/10.1016/j.tetlet.2009.08.032
  59. Porcheddu, A.; Giacomelli, G.; Piredda, I.; Carta, M.; Nieddu, G. A practical and efficient approach to PNA monomers compatible with Fmoc-mediated solid-phase synthesis protocols. Eur. J. Org. Chem. 2008, 5786. doi.org/10.1002/ejoc.200800891
  60. Carta, M.; Msayib, K. J.; Budd, P. M.; McKeown, N. B. Novel Spirobisindanes for Use as Precursors to Polymers of Intrinsic Microporosity. Org. Lett. 2008, 10 (13), 2641. doi: 10.1021/ol800573m